翻訳と辞書
Words near each other
・ Loop antenna
・ Loop around
・ Loop Ash Records
・ LOOP Barcelona
・ Loop bin duplicator
・ Loop braid group
・ Loop counter
・ Loop Creek
・ Loop Creek (West Virginia)
・ Loop Current
・ Loop dependence analysis
・ Loop device
・ Loop di Love
・ Loop diuretic
・ Loop electrical excision procedure
Loop entropy
・ LOOP Filmworks
・ Loop fission
・ Loop fusion
・ Loop gain
・ Loop group
・ Loop Guru
・ Loop Halt railway station
・ Loop Head
・ Loop heat pipe
・ Loop I Bubble
・ Loop Independent School District
・ Loop integral
・ Loop interchange
・ Loop invariant


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Loop entropy : ウィキペディア英語版
Loop entropy
Loop entropy is the entropy lost upon bringing together two residues of a polymer within a prescribed distance. For a single loop, the entropy varies logarithmically with the number of residues N in the loop
:
\Delta S = \alpha k_ \ln N \,

where k_ is Boltzmann's constant and \alpha is a coefficient that depends on the properties of the polymer. This entropy formula corresponds to a power-law distribution P \sim N^ for the probability of the residues contacting.
The loop entropy may also vary with the position of the contacting residues. Residues near the ends of the polymer are more likely to contact (quantitatively, have a lower \alpha) than those in the middle (i.e., far from the ends), primarily due to excluded volume effects.
==Wang-Uhlenbeck entropy==
The loop entropy formula becomes more complicated with multiples loops, but may be determined for a Gaussian polymer using a matrix method developed by Wang and Uhlenbeck. Let there be M contacts among the residues,
which define M loops of the polymers. The Wang-Uhlenbeck matrix \mathbf is an M \times M symmetric, real matrix whose elements W_ equal the number of common residues between loops i and j. The entropy of making the specified contacts equals
:
\Delta S = \alpha k_ \ln \det \mathbf

As an example, consider the entropy lost upon making the contacts between residues 26 and 84 and residues 58 and 110 in a polymer (cf. ribonuclease A). The first and second loops have lengths 58 (=84-26) and 52 (=110-58), respectively, and they have 26 (=84-58) residues in common. The corresponding Wang-Uhlenbeck matrix is
:
\mathbf\ \overset}\begin
58 && 26 \\
26 && 52
\end

whose determinant is 2340. Taking the logarithm and multiplying by the constants \alpha k_ gives the entropy.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Loop entropy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.